Patterns of Polymorphism and Demographic History in Natural Populations of Arabidopsis lyrata
نویسندگان
چکیده
BACKGROUND Many of the processes affecting genetic diversity act on local populations. However, studies of plant nucleotide diversity have largely ignored local sampling, making it difficult to infer the demographic history of populations and to assess the importance of local adaptation. Arabidopsis lyrata, a self-incompatible, perennial species with a circumpolar distribution, is an excellent model system in which to study the roles of demographic history and local adaptation in patterning genetic variation. PRINCIPAL FINDINGS We studied nucleotide diversity in six natural populations of Arabidopsis lyrata, using 77 loci sampled from 140 chromosomes. The six populations were highly differentiated, with a median FST of 0.52, and structure analysis revealed no evidence of admixed individuals. Average within-population diversity varied among populations, with the highest diversity found in a German population; this population harbors 3-fold higher levels of silent diversity than worldwide samples of A. thaliana. All A. lyrata populations also yielded positive values of Tajima's D. We estimated a demographic model for these populations, finding evidence of population divergence over the past 19,000 to 47,000 years involving non-equilibrium demographic events that reduced the effective size of most populations. Finally, we used the inferred demographic model to perform an initial test for local adaptation and identified several genes, including the flowering time gene FCA and a disease resistance locus, as candidates for local adaptation events. CONCLUSIONS Our results underscore the importance of population-specific, non-equilibrium demographic processes in patterning diversity within A. lyrata. Moreover, our extensive dataset provides an important resource for future molecular population genetic studies of local adaptation in A. lyrata.
منابع مشابه
Demography and weak selection drive patterns of transposable element diversity in natural populations of Arabidopsis lyrata.
Transposable elements (TEs) are the major component of most plant genomes, and characterizing their population dynamics is key to understanding plant genome complexity. Yet there have been few studies of TE population genetics in plant systems. To study the roles of selection, transposition, and demography in shaping TE population diversity, we generated a polymorphism dataset for six TE famili...
متن کاملTesting for effects of recombination rate on nucleotide diversity in natural populations of Arabidopsis lyrata.
We investigated DNA sequence diversity for loci on chromosomes 1 and 2 in six natural populations of Arabidopsis lyrata and tested for the role of natural selection in structuring genomewide patterns of variability, specifically examining the effects of recombination rate on levels of silent polymorphism. In contrast with theoretical predictions from models of genetic hitchhiking, maximum-likel...
متن کاملContrasting patterns of nucleotide polymorphism at the alcohol dehydrogenase locus in the outcrossing Arabidopsis lyrata and the selfing Arabidopsis thaliana.
Nucleotide variation at the alcohol dehydrogenase locus (Adh) was studied in the outcrossing Arabidopsis lyrata, a close relative of the selfing Arabidopsis thaliana. Overall, estimated nucleotide diversity in the North American ssp. lyrata and two European ssp. petraea populations was 0.0038, lower than the corresponding specieswide estimate for A. thaliana at the same set of nucleotide sites....
متن کاملPopulation dynamics of an Ac-like transposable element in self- and cross-pollinating arabidopsis.
Theoretical models predict that the mating system should be an important factor driving the dynamics of transposable elements in natural populations due to differences in selective pressure on both element and host. We used a PCR-based approach to examine the abundance and levels of insertion polymorphism of Ac-III, a recently identified Ac-like transposon family, in natural populations of the ...
متن کاملGene, phenotype and function: GLABROUS1 and resistance to herbivory in natural populations of Arabidopsis lyrata.
The molecular genetic basis of adaptive variation is of fundamental importance for evolutionary dynamics, but is still poorly known. Only in very few cases has the relationship between genetic variation at the molecular level, phenotype and function been established in natural populations. We examined the functional significance and genetic basis of a polymorphism in production of leaf hairs, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008